Content text 2. BẤT ĐẲNG THỨC VÀ GIÁ TRỊ LỚN NHẤT, NHỎ NHẤT CỦA BIỂU THỨC.Image.Marked.pdf
	
		CHƯƠNG 2. BẤT ĐẲNG THỨC VÀ GIÁ TRỊ LỚN NHẤT, NHỎ NHẤT CỦA BIỂU THỨC Câu 1. (Trường chuyên tỉnh Bà Rịa – Vũng Tàu năm 2023-2024) Với các số thực dương a,b,c thay đổi thoả mãn abc 1. Tìm giá trị nhỏ nhất của biểu thức:          2 2 2 3 3 3 3 3 3 1 8 1 8 1 8 1 8 1 8 1 8 a b c P a b b c c a          Lời giải Áp dụng bất đẳng thức Cô – si ta được:   2 3 2 1 2 1 2 4 2 1 8 (1 2 ) 1 2 4 2 1. 2 a a a a a a a a             Tương tự, ta có: 3 2 3 2 1 8b  2b 1; 1 8c  2c 1. Do đó:          2 2 2 2 2 2 2 2 2 2 1 2 1 2 1 2 1 2 1 2 1 a b c P a b b c c a          Tiếp theo ta chứng minh:          2 2 2 2 2 2 2 2 2 1 (*) 2 1 2 1 2 1 2 1 2 1 2 1 3 a b c a b b c c a          Thật vậy:         2 2 2 2 2 2 2 2 2 2 2 2 (*)  3 2 a b  b c  c a  a  b  c  2a 1 2b 1 2c 1     2 2 2 2 2 2 2 2 2  2 a b  b c  c a  a  b  c  9. Điều này hiển nhiên đúng do 2 2 2 2 2 2 4 4 4 4 a b  b c  c a  3 a b c  3 và 2 2 2 3 2 2 2 a  b  c  3 a b c  3. Vậy GTNN của 1 3 P  đạt tại a  b  c 1 Câu 2. (Trường chuyên tỉnh Bắc Giang năm 2023-2024) Cho x, y, z là các số thực dương và thỏa mãn điều kiện x + y + z = xyz. Tìm giá trị lớn nhất của các biểu thức P= 2 2 2 1 1 1 . 1 x 1 y 1 z      Lời giải Từ giả thiết x + y + z = xyz, ta có 1 1 1 1. xy yz xz    Dặt a= 1 1 1 ;b ;c a, b,c 0; x y z     Giả thiết trở thành ab + bc + ca = 1; P = 2 2 2 a b c 1 a 1 b 1 c      
Đẻ ý rằng:    2 2 a 1  a  ab  bc  ca  a  b a  c    2 2 b 1  b  ab  bc  ca  b  a b  c    2 2 c 1  c  ab  bc  ca  c  a c  b Lúc này ta có: P=          a b c a b a c b a b c c a c b         = a a b b c c . . . a b a c b a b c c a c b         Theo bất đẳng thức Cô-si (AM-GM), ta có: P 1 a a b b c c 2 a b a c b a b c c a c b                   hay P 3 2  . Dấu = xảy ra khi và chỉ khi a = b = c = 1 hay x y z 3 3    Vậy giá trị lớn nhất của P = 3 x y z 3. 2     Câu 3. (Trường chuyên tỉnh Bắc Ninh năm 2023-2024) Cho các số thực dương a,b,c thỏa mãn a  b  c  3 . Chứng minh rằng 15 6 abc ab bc ca     Lời giải Ta sẽ chứng minh 3 2a3 2b3 2c  abc (1). Nếu 3 2a3 2b3 2c  0 thì (1) đúng Ta có              2 2 2 2 2 2 3 2 3 2 3 2 3 2 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 . 2 3 2 3 2 3 2 3 2 2 a b a b c a c a c b a b c abc c b c b a                                                   Dấu “=” ở (1) xảy ra khi a = b = c = 1. Từ (1) ta có 27  92a  2b  2c  34ab  4bc  4ca 8abc  abc  27  9.6 12ab  bc  ac 8abc  abc (do a  b  c  3) 
  4 3 3  abc  ab  bc  ca  Lúc này       2 15 4 12 3 3 3 4 12 9 2 3 8 1 3 6 3 15 6 ( ). abc ab bc ca ab bc ca ab bc ca ab bc ca ab bc ca ab bc ca a b c Suy ra abc đpcm ab bc ca                               Dấu “=” xảy ra khi a = b = c = 1. Câu 4. (Trường chuyên tỉnh Bến Tre năm 2023-2024) Cho số thực x thỏa mãn 0 1 2  x  . Tìm giá trị nhỏ nhất của biểu thức 2 1 2 1 2 3 x x A x x      Lời giải Đặt 1 a ,a 2 x   . Khi đó 1 2 2 1 2 1 2 3 2 4 2 2 3 2 3 2 3 3 1 a a a a a A a a a a                 . Áp dụng bất đẳng thức AM GM cho hai số dương 3 a  2 và 2 3 a  , ta được 3 2 4 16 2 2 2 3 3 3 a A a        . Đẳng thức xảy ra khi và chỉ khi 1 5 5 a   x  . Câu 5. (Trường chuyên tỉnh Bình Phước năm 2023-2024) Cho a, b, c là các số dương. Chứng minh: 2 2 2 4 bc ca ab a b c a b c b c a c a b            . Lời giải Chứng minh được bất đẳng thức 1 1 4 . a b a b    Ta có     1 1 4 1 1 1 2a b c 4 a b a c 4 a b a c                  1 2 4 bc bc bc a b c a b a c              (1) Tương tự, ta có 
1 2 4 ac ac ac b a c b c b a             (2) 1 2 4 ab ab ab c a b a c b c             . (3) Cộng (1), (2) và (3) vế theo vế ta được 1 4 1 . 4 4 bc bc ac ac ab ab VT a b a c b c b a a c b c bc ca bc ab ca ab a b c a b a b a c a c b c b c                                                      Dấu "=" xảy ra  a  b  c. Câu 6. (Trường chuyên tỉnh Cần Thơ năm 2023-2024) Cho a,b,c là các số thực không nhỏ hơn 1. Chứng minh rằng: 1 1 1 4 ab bc ca a b c b c c a a b            Lời giải Áp dụng bất đẳng thức AM-GM, ta có 1 1 1 1 1 1 1 2 2 2 ab ab a a b c bc c bc c b               Lại theo bất đẳng thức AM-GM, ta có: 1 1 1 1 1 1 1 1 1 . 2 2 2 4 a c b a a c b c b                    Tương tự, ta có: 1 1 1 1 4 1 1 1 1 1 4 ab a bc c c b c a ca b a a c c b c b a                                      Cộng vế theo vế các bất đẳng thức trên, ta được: 1 1 1 4 ab bc ca a b c b c c a a b            (đpcm) Đẳng thức xảy ra khi a  b  c  2 Câu 7. (Trường chuyên tỉnh Cao Bằng năm 2023-2024) Với a,b,c là ba số thực dương, chứng minh rằng: 2 2 2 3 2 8 2 14 3 2 8 2 14 3 2 8 2 14 5 a b c a b c a b ab b c bc c a ca            .